A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER OF EXISTENCE OF SOLUTIONS THE HALF - LINE VIA MONOTONE THEORY

RAMESH B. GHADGE

Abstract: A boundary value problem we discuss existence and uniqueness of a weak solution of a fractional problem on the half-line via the Minty - Browder theorem.

Keywords: Monotone operatior, hemicontinuours operator, demicontinuous operator. Minty - Browder theorem, fractional B.V.P.s weak solution, uniqueness.

Introduction: Fractional Calculus is a generalization of ordinary differentiation and integration to an arbitvary order. In this paper we study to fractional boundary value problem.

$$D^{\alpha} - (D^{\alpha} + u(t)) + u(t) =$$

((t₁u(t)), t \in (0, +\infty)
u(0) = u(+\infty) = 0

 $\frac{1}{2} < \propto 1 \text{ and } f; (0 + \infty) \times \mathbb{R} \to \mathbb{R}$ Where is а first caratheodory function recall we fractionalintegral and derivatives operators:

Definition 1.1. ([5], [8], [7]) Let μ ba a function defined on (o, $+\infty$). The left and right Riemann – Liouville fractional integrals of order $\alpha > o$ for a function μ denoted by $I^{a} + \mu$ and $I^{a} - \mu$, respectively, are defined by

$$I^{\alpha} + \mu$$
 (t) = $\frac{1}{I(\alpha)} \int_{0}^{t} (t - s)^{\alpha - 1} \mu$ (s)

ds, $t \in (0, +\infty)$, And

$$I^{\alpha} + \mu$$
 (t) = $\frac{1}{I(\alpha)} \int_{t}^{+\infty} (s-t)^{\alpha-1} \mu$

(s) ds, $t \in (o, +\infty)$,

Provided that the right - hand side is pointwise defined on $(o, + \infty)$; here T (α) is the gamma function.

Definition 1.2: ([5], [8], [7]) Let μ be a function defined on $(0, +\infty)$. For

N – 1 ≤ α < n (n \in N^{*}), the left and right Riemann – Liouville fractional derivatives of order α for a function μ denoted by $D^{\alpha} + \mu$ and $D^{\alpha} - \mu$ respectively, are defined by

$$\begin{split} D^{\alpha} + \mu(t) &= \frac{d^{n}}{dt^{n}} I^{n-\alpha} + u(t) \\ &= \frac{1}{T(n-\alpha)} \qquad \qquad \frac{d^{n}}{dt^{n}} \int_{0}^{t} (t-s) \quad ^{n-\alpha-1} \mu(s) ds, t \in \\ (0,+\infty), \end{split}$$

And

$$D^{\alpha} - u(t) = (-1)^n \frac{d^n}{dt^n} I^{n-\alpha} u(t)$$

=
$$\frac{(-1)^n}{T(n-\alpha)} \frac{d^n}{dt^n} \int_t^{+\infty} (s-t)^{n-\alpha-1} u(t)$$

(s) ds, $t \in (0, +\infty)$,

Provided that the right - hand side is pointwise defined.

In particular for $\alpha = n$, $D^{\alpha} + u(t) = D^{\alpha}u(t) =$ $D^{n}u(t)$ and $D^{\propto} - u(t) = (-1)^{n} D^{n}u(t), t \in (0, +\infty)$ **Proposition 1.1.**[5] If $D^{\alpha} + u(t) = D^{\alpha} - u \in$ $L^1(0, +\infty)$ and $n-1 \leq \propto < n$, then

$$I^{\alpha} + D^{\alpha} + u(t) = u(t) + \sum_{j=1}^{n} Cj (t-a)^{\alpha-j}$$
$$I^{\alpha} - D^{\alpha} - u(t) = u(t) + \sum_{j=1}^{n} Cj (b-t)^{\alpha-j}$$

With $C_j^1+\frac{(-1)^{\alpha-1}D_{b-}^{\alpha-1}}{T(\alpha-j+1}\in R, j=1,2\ldots,n.$

Now we introduce a new space which is suitable for the study of our fractional BVP. Let.

$$E_0^{\infty}(0, +\infty) = \{ u \in L^2(0, +\infty) . D^{\infty} + u \\ \in L^2(0, +\infty), u(0) = u(\infty) = 0 \},\$$

With the natural norm

$$||u|| \propto = \left(\int_{0}^{+\infty} |u(t)|^{2} dt + \int_{0}^{+\infty} |D^{a} + u(t)|^{2} dt\right)^{\frac{1}{2}}, \forall u$$

$$\in E_{0}^{\alpha}(0, +\infty). (1.2)$$
the areas $f_{0}([0, +\infty))$ he defined by

Let the space $C_p([0, +\infty))$ be defined by

 $C_p([0,+\infty)) =$ $\{u \in C([0, +\infty)), R\}$: $\lim p(t)u(t)exists\}$ $\{u \in C([0, \tau \sim j), x\} \in U$ And endowed with the norm $||u|| \infty, p = \frac{sup}{t \in [0, +\infty)} p(t)|u(t)|,$

Where the function $p : [0, +\infty) \rightarrow (0, +\infty)$ is continuous and satisfies

$$\lim_{n\to+\infty}p(t)t^{\alpha-\frac{1}{2}}=0.$$

We put

 $M = \frac{1}{\sqrt{2\alpha - 1} r(\alpha)} \cdot \frac{\sup}{t > 0} p(t) t^{\alpha - \frac{1}{2}}.$

Throughout this paper we assume p satisfies these conditions. Using the same idea as in [5] one can casily prove the following proposition.

Proposition 1.2: [5] If $u \in L^2(0, +\infty)$, $D^{\propto} + u \in$ $L^{2}(0, +\infty)$ with u(0) =

$$U(+\infty) = 0 \text{ and } u \in C_0^{\infty}([0, +\infty)), \text{ then}$$
$$\int_0^{+\infty} D^{\infty} + u(t)u(t)dt = \int_0^{+\infty} u(t)D^{\infty} - u(t)dt.$$

Using Proposition 1.2. wo now define a weak solution of problem (1.1).

Definition 1.3.: A weak solution of the fractional boundary value problem (1.1) is given by a solution of the following variational formula.

$$\int_0^{+\infty} \left[D^{\alpha} + u(t)D^{\alpha} + u(t) + u(t)u(t) - f(t,u(t))u(t) \right] dt = 0, \text{ for all } u$$

 $\in E_0^{\infty}(0,+\infty).$

Now we recall some information for the literature needed in this paper.

Definition 1.4.: [9] Let X be a Banach space. An operatior $A : X \rightarrow X^*$ which satisfies.

 $\langle Au - Au, u - u \rangle \ge 0$

For any $u, v \in X$ is called a monotone operator. An operator A is called strictly monotone it for $u \neq v$ strict inequality holds in (1.3). An operatior A is called strongly monotone if there exists C > 0 such that.

$$\langle Au - Au, u - u \rangle \ge C ||u - u||^2$$

For any $u, v \in X$. It is clear that a strongly monotone is strictly monotone.

Detinition 1.5. [9] Let $A : X \to X^*$ be an operator on the real Banach

space X.

- (a) A is said to be demicontinuous if
- $u_n \rightarrow u \text{ as } n \rightarrow +\infty \text{ implies } Au_n \rightarrow Au \text{ as } n \rightarrow +\infty.$ (b) A is said to be hemicontionus if the real function.
- $t \rightarrow \langle A(u + tu), w \rangle$ is continuous on [0.1] for al u, v, $w \in X$.
- (c) A is said to be coercive if

$$||u||^{lim} \to +\infty \frac{\langle Au. u \rangle}{||u||} = +\infty.$$

Remark 1.1. [4] It is easy to see that for monotone operatior $A : X \rightarrow X^*$

With Dom (A) = X, demicontinuity and hemicontinuity are equivalent.

Theorem 1.3. [6] (Minty-Browder) Let X be a reflexive real Banach space.

Let A : $X \to X^*$ be an operatior which is bounded, hemicontious, coercive and monotone on the space X. Then, the equation Au = f has at least one solution $u \in X$ for each $f \in X^*$. If a is strictly monotone then the solution is unique.

2. Main Result:

We begin with the space $E_0^{\infty}(0, +\infty)$.

Proposition 2.1. $E_0^{\alpha}(0, +\infty)$. is a Banach space.

Proof. Let $(u_n) n \ge 1$ be a Causchy sequence in $E_0^{\alpha}(0, +\infty)$. Then $(u_n) n \ge 1$,

 $(D^{\alpha} + un)n \ge 1$ are Cauchy sequences in $L^2(0, +\infty)$. From (1.2) we have $||u_n - u_m||_{\alpha} \to 0$ as $n, m \to +\infty$ which implies that

 $||u_n - u_m||_{L^2 \to 0, ||D^{\alpha} + u_n - D^{\alpha} + u_m||_{L_2 \to 0}}$

As n, $m \rightarrow +\infty$. Since $L^2(0 + \infty)$ is a Banach space, there exist functions

 $u_1, u_2 \in L^2(0 + \infty)$ such that $u_1 \rightarrow u_1, D^{\alpha} + u_n \rightarrow u_2$ in $L^2(0, +\infty)$ as

 $n \rightarrow +\infty$. We now show that $D^{\alpha} + u_1 = u_2$. From Proposition 1.2, we have

$$\int_{0}^{+\infty} D^{\alpha} + u_{n}(t)dt$$
$$= \int_{0}^{+\infty} u_{n}(t)D^{\alpha} - \varphi(t)dt, \forall \varphi$$
$$\in C_{0}^{\infty}([0, +\infty))$$

And then by using the definition of the inner product in $L^2(0, +\infty)$, we obtain that

$$\int_{0}^{+\infty} u_{2}(t)dt = \int_{0}^{+\infty} u_{1}(t)D^{\alpha} - \varphi(t)dt, \forall \varphi$$
$$\in C_{0}^{\infty}([0, +\infty))$$

And so $D^{\propto} + u_1$. Thus $\lim_{n \to +\infty} ||u_n - u_1|| \propto = 0$, and so $E_0^{\propto}(0, +\infty)$ is a Banach space.

Lemma 2.2. The operator

 $T : E_0^{\alpha}(0, +\infty) \to T\left(E_0^{\alpha}(0, +\infty)\right) \subset L^2(0, +\infty) = L_2^2(0, +\infty)$

$$u \to T(u) = (u, D^{\alpha} + u)$$

Proof. It is clear that T is a linear operation and we now show that T conserves norms, i.e.

$$\forall u \in E_0^{\infty}(0, +\infty): ||Tu||L_2^2 = ||u|| \propto.$$

Indeed, we have

$$||(\mathbf{u}, D^{\alpha} + u) ||L_2^2 = ||u|| \propto$$

$$\Leftrightarrow ||u||L_2 + ||D^{\alpha} + u||L^2 = ||u|| \propto.$$

Proposition 2.3. $E_0^{\alpha}(0, +\infty)$ is a reflexive space.

Proof. Since, $L^2((0, +\infty))\mathbb{R})$ is a reflexive Banach space, the Cartesian space

 $L_2^2(0, +\infty)\mathbb{R}$) = $L^2((0, +\infty)\mathbb{R}) \times L^2(0, +\infty)\mathbb{R})$ Is also a reflexive Banach space with respect to the norm.

$$||u||L_2^2 = \sum_{u=1}^2 ||u_i||L^2$$
 where $u = (u_1, u_2) \in [0, +\infty)\mathbb{R}$.

 $L_2^2(0, +\infty)\mathbb{R}$) Then

$$: \quad E_0^\infty(0,+\infty) \to T(E_0^\infty(0,+\infty) \subset$$

 $L_{2}^{2}(0, +\infty)$

 $u \rightarrow T(u) = (u, D^{\alpha} + u)$ sometric isomorphic So T ($F_{\alpha}^{\alpha}(u)$

Т

is an isometric isomorphic. So T $(E_0^{\alpha}(0, +\infty))$ is a closed subspace of $L_2^2(0, +\infty)$

and by [[2], Theorem 4.10.5] then $T(E_0^{\alpha}(0, +\infty))$ is reflexive. Consequently

 $E_0^{\alpha}(0, +\infty)$ is also reflexive (see[[2], Lemma 4.10.4]).

Proposition 2.4 $E_0^{\alpha}(0, +\infty)$ is a separable space.

Proof. Since, $L^2(0, +\infty)$, \mathbb{R}) is a separable Banach space, the Cartesian space

 $L_2^2(0,+\infty)\mathbb{R}) = L^2(0,+\infty)\mathbb{R}) \times L^2(0,+\infty)\mathbb{R})$

Is also a separable Banach space with respect to the norm.

 $||u||L_2^2 \sum_{i=1}^2 ||u_i|| L^2$ where $u = (u_1, u_2) \in L_2^2(0, +\infty) \mathbb{R}$).

Then, the space $T(E_0^{\alpha}(0, +\infty)) \subset L_2^2$ is also separable (see [1], Proposition

111.22). Morcover, the operaor

$$\begin{split} \mathrm{T} &: E_0^{\infty}(0,+\infty) \to T(E_0^{\infty}(0,+\infty) \subset L_2^2(0,+\infty) \\ \mathrm{u} \to T(u) &= (u,D^{\infty}+u) \end{split}$$

is an isometric isomorphic, so $E_0^{\alpha}(0, +\infty)$ is a separable space.

For all $u \in E_0^{\infty}(0, +\infty)$ we have that Lemma 2.5. $E_0^{\alpha}(0, +\infty)$ embeds continuously in $C_p(0, +\infty)$). i.e., $\exists M_0 > 0, ||u||_{\infty,p} \le M_0 ||u||_{\propto}.$ **Proof.** For all $u \in E_0^{\alpha}(0, +\infty)$, and t > 0, $U(t)=I_{+}^{\alpha}(D^{\alpha}+u(t)),$

So

 $P(t)u(t)=p(t) I_{+}^{\alpha}(D^{\alpha}+u(t))$

Which implies from the Cauchy-Schwartz inequality $\left| p(t) I_+^{\alpha} \left(D^{\alpha} + u(t) \right) \right|$

$$= \frac{p(t)}{T(\alpha)} |\int_{0}^{t} (t-s)^{\alpha-1} D^{\alpha} + u(s) ds|$$

$$\leq \frac{p(t)}{T(\alpha)} (\int_{0}^{t} (t-s)^{2(\alpha-1)} ds)^{\frac{1}{2}} (\int_{0}^{t} D^{\alpha} + u(s))^{2} ds)^{\frac{1}{2}}$$

$$\leq \frac{p(t)}{T(\alpha)} (\int_{0}^{t} (t-s)^{2(\alpha-1)} ds)^{\frac{1}{2}} (\int_{0}^{+\infty} |u(s)|^{2} ds$$

$$+ \int_{0}^{+\infty} |D^{\alpha} + u(s)|^{2} ds)^{\frac{1}{2}}$$

$$= \frac{||u|| \alpha}{\sqrt{2 \alpha - 1 \cdot T(\alpha)}} p(t) t^{\alpha - \frac{1}{2}}$$

Then

$$\begin{aligned} ||\mathbf{u}||^{\infty}, p &= \sup_{\substack{t \in [0, +\infty) \\ t \in [0, +\infty)}} |p(t)u(t)| \\ &= \sup_{t \in [0, +\infty)} |p(t)I^{4}(D^{\alpha} + u(t))| \\ &\leq \frac{||u||^{\alpha}}{\sqrt{2\alpha - 1.T(\alpha)}} \cdot \sup_{t>0} p(t)t^{\alpha - \frac{1}{2}}, \end{aligned}$$

And so,

 $||\mathbf{u}|| \infty, p \le M ||\mathbf{u}|| \propto.$

From the definition of the norm in $E_0^{\alpha}(0, +\infty)$, it is easy to see that

Proposition 2.6. $E_0^{\alpha}(0, +\infty)$ embeds continuously in $L^{2}(0, +\infty).$

To prove the compactness embedding of $E_0^{\infty}(0, +\infty)$ in $C_p([0, +\infty))$ we follow the ideas in [3].

Lemma 2.7.[3] I.ct $D \subset C_p([0, +\infty))$ be a bounded set. Then D is relatively compact if the following conditions hold.

D is equicontinuous on any compact sub-(a) interval of \mathbb{R}^+ , *i.e.*,

$$\begin{array}{l} \forall J \subset [0, +\infty) compact \ subinterval, \forall \in > 0, \exists \delta \\ > 0, \forall t_1, t_2 \in J, \\ |t_1 - t_2| < \delta \Longrightarrow |p(t_1)u(t_1) - p(t_2)u(t_2)| \leq \\ \varepsilon, \forall u \in D, \end{array}$$
(b) Dis equiconvergent at +\pi i.e.,

$$\begin{array}{l} \forall \varepsilon > 0, \exists \ T = T(\varepsilon) > 0 \ such \ that \\ \forall t_1, t_2: \ t_1, t_2 \geq T(\varepsilon) \Longrightarrow |p(t_1)u(t_1) - |p(t_2)u(t_2)| \\ \leq \varepsilon, \forall u \in D. \end{array}$$

Theorem 2.8. The embedding

$$E_0^{\propto}(0,+\infty) \to C_p([0,+\infty))$$

Is compact. **Proof.** Let $D \subset E_0^{\alpha}(0, +\infty)$ be a bounded set. Then it is bounded in

 $C_p([0, +\infty))$ by Lemma 2.5. Let R>0 be such that for all $u \in D||u|| \propto \leq R$.

We will apply Lemma 2.7.

D is equicontinuous on every compact (a) interval of $[0, +\infty)$.

> Let $u \in D$ and $t_1, t_2 \in J \subset [0, +\infty)$. where J is a compact sub-interval and by the Cauchy-Schwarz inequality, we have

$$\begin{aligned} |p(t)I^{\alpha} + u(t1) - p(t_2)I^{\alpha} + u(t_2) &= \\ \frac{1}{T(\alpha)} |p(t_1) \int_0^{t_1} (t_1 - s)^{\alpha - 1} u(s) ds \\ - p(t_2) \int_0^{t_1} (t_1 - s)^{\alpha - 1} u(s) ds | \\ &\leq \frac{1}{T(\alpha)} |p(t_1) \int_0^{t_1} (t_1 - s)^{\alpha - 1} u(s) ds \\ - p(t_2) \int_0^{t_1} (t_1 - s)^{\alpha - 1} u(s) ds | \end{aligned}$$

$$\begin{split} \frac{p(t_2)}{T(\alpha)} | \int_{t_1}^{t_2} (t_2 - s)^{\alpha - 1} u(s) ds | \\ & \leq \frac{1}{T(\alpha)} \int_0^{t_1} |p(t_1) (t_1 - s)^{\alpha - 1} p(t_2) (t_2 \\ & -s)^{\alpha - 1}) ||u(s)| ds \\ & + \frac{p(t_2)}{T(\alpha)} | \int_{t_1}^{t_2} (t_2 - s)^{\alpha - 1} u(s) ds | \\ & \leq \frac{||u|| L^2}{T(\alpha)} [(\int_0^{t_1} (p(t_2) (t_1 - s)^{\alpha - 1} - p(t_2) (t_2 \\ & -s)^{\alpha - 1})^2 ds)^{1/2} \\ & p(t_2) \int_{t_1}^{t_2} (t_2 - s)^{2\alpha - 2} ds] \end{split}$$

So we have

$$\begin{split} |p(t_{1})u(t_{1}) - |p(t_{2})u(t_{2})| \\ &= p(t_{1})I^{\alpha} + D^{\alpha} + u(t_{1}) - p(t_{2})I_{0}^{\alpha} \\ &+ D^{\alpha} + u(t_{2})| \\ < \frac{||D^{\alpha} + u||L^{2}}{T(\alpha)} \left(\int_{0}^{t_{1}} (p(t_{1})(t_{1} - s)^{\alpha - 1} - p(t_{2})(t_{2}) \\ &- s)^{\alpha - 1})^{2}ds)^{1/2} \right) \\ &+ \frac{||D^{\alpha} + u||L^{2}}{T(\alpha)} p(t_{2}) \left(\int_{t_{1}}^{t_{2}} (t_{2} - s)^{2\alpha - 2}ds)^{1/2} \\ &\leq \frac{R}{T(\alpha)} \left(\int_{0}^{t_{1}} (p(t_{1})(t_{1} - s)^{\alpha - 1} - p(t_{2})(t_{2}) \\ &- s)^{\alpha - 1})^{2}ds)^{1/2} \right) \right) \\ &+ \frac{R}{T(\alpha)} p(t_{2}) \left(\int_{t_{1}}^{t_{2}} (t_{2} - s)^{(\alpha - 1)}ds \right)^{\frac{1}{2}} \to 0. \end{split}$$

As $|t_1 - t_2| \rightarrow 0$.

References:

- 1. L. Gasinski, N.S. Papageargiou, Nonsmooth critical point theory and non linear boundary value problems, Chapman-Hall CRC, 2005.
- 2. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
- 3. M. Thangaraj, S. Anuradha, integrated Energy Management Framework Aatral for Energy Engineering in Wireless Sensor Network; Engineering Sciences international Research Journal: ISSN 2320-4338 Volume 3 Issue 1 (2015), Pg 1-6
- 4. E. Zeidler, nonlinear Functional Analysis and Its Applications, II / B, Springer Verlag, Berlin, New York, 1986.
- 5. A.Friedman ; Foundations of modern analysis, Dover Publications, Inc, New York, 1982.

- 6. Shrinath Kulkarni, Reduction of Lube Oil Consumption and Blowby in A Diesel Engine By Study and Development of Piston Ring Parameters. ; Engineering Sciences international Research Journal: ISSN 2320-4338 Volume 3 Issue 1 (2015), Pg 7-11
- 7. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, Elsevier science, Amsterdam, 2006.
- 8. S.G.Samko, A.A. Kilbas, O.I. Marichev; Fractional Integral and Derivations, theorg and applications, Gordon and Break, 1993.
- 9. M. Venkateswarlu , B. Rajini Kanth, Viscoelastic Properties of Nanoparticulated Magnetite and Cobalt Ferrite Based Mr Fluids; Engineering Sciences international Research Journal: ISSN 2320-4338 Volume 3 Issue 1 (2015), Pg 12-16

Ramesh B. Ghadge Assistant Professor & Head - Department of Mathematics Kalikadevi Arts, Commerce & Science College, Shirur (Ka) Dist. Beed. (MS) – 413249.