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Abstract: In ecology, sustainability is how biological systems remain diverse and productive. Creative 
approaches at the interface of environment and ecology, statistics, mathematics, informatics, and 
computational science are essential for improving our understanding of complex ecological systems. The new 
information technologies, including powerful computers, spatially embedded sensor networks, and Semantic 
Web tools, are emerging as potentially revolutionary tools for studying ecological phenomena. These 
technologies can play an important role in developing and testing detailed models that describe real-world 
systems at multiple scales. Meeting challenges of model complexity necessary for understanding biological 
patterns across space and time, and applying this understanding to solve problems in conservation biology and 
resource management requires novel statistical and mathematical techniques for distinguishing among 
alternative ecological theories and hypotheses.  
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Introduction: Healthy ecosystems and 
environments are necessary to the survival of humans 
and other organisms. Ways of reducing negative 
human impact are environmentally-friendly chemical 
engineering, environmental resources management 
and environmental protection. Information is gained 
from green chemistry, earth science, environmental 
science and conservation biology. Ecological 
economics studies the fields of academic research 
that aim to address human economies and natural 
ecosystems. The history of sustainability traces 
human-dominated ecological systems from the 
earliest civilizations to the present time. A major 
driver of human impact on Earth systems is the 
destruction of biophysical resources, and especially, 
the Earth's ecosystems. The environmental impact of 
a community or of humankind as a whole depends 
both on population and impact per person, which in 
turn depends in complex ways on what resources are 
being used, whether or not those resources are 
renewable, and the scale of the human activity 
relative to the carrying capacity of the ecosystems 
involved. Careful resource management can be 
applied at many scales, from economic sectors like 
agriculture, manufacturing and industry, to work 
organizations, the consumption patterns of 
households and individuals and to the resource 
demands of individual goods and service This article 
illustrate that the interface between ecology, 
mathematics, statistics, and computer science is rich; 
that the need to foster integration and collaborations 
among these disciplines is great; and that the 
potential impact of this interdisciplinary research is 
unlimited. 
Modeling Ecological Complexity: The greatest 
challenge today, not just in cell biology and ecology 
but in all of science, is the accurate and complete 

description of complex systems. Scientists have 
broken down many kinds of systems. They think they 
know most of the elements and forces. The next task 
is to reassemble them, at least in mathematical 
models that capture the key properties of the entire 
ensembles. 
As ecology has matured, our conceptual and 
theoretical models for how the world works have 
evolved from the very simple to the very complex 
[35]. Simple models that ignore individual and 
environmental variation, species interactions, and 
transient dynamics try to capture generalities about 
systems and offer analytical tractability. Advances in 
mathematics, statistics, and computation help us to 
assess more fully the consequences of such 
simplifications and to incorporate more realism. In 
many situations, this translates into more complex 
models. 
A challenge in modeling any system is the choice of 
level of detail. The challenge resides in identifying 
which details at one level of organization are driving 
phenomena at other levels, and which details can be 
ignored. In many cases, developing a suite of 
complementary models operating at different scales 
and levels of complexity will help elucidate the 
mechanisms underlying observed macroscopic 
patterns. However, building more detailed and 
complex models is not always better. 
Complexity typically demands additional data and 
computation time, and makes model results difficult 
to analyze. Researchers need tools for identifying the 
situations in which building detailed models will 
increase our ability to understand and predict the 
structure and dynamics of ecological systems. In 
general, situations that call for more detailed models 
will either require mathematical approximations of 
added complexity or advances in computer science 
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that allow more efficient computation. In the 
following sections, we describe three areas in which 
advances in computational science may improve 
ecological theory by providing ways to incorporate 
increased biological complexity. 
Transient Dynamics: Ecological theory has 
traditionally focused on long-term or asymptotic 
behavior as a way to understand natural systems, 
with stability analysis as the primary tool [38]. Even 
models that incorporate non-equilibrium dynamics, 
such as limit cycles or chaos, primarily look at long-
term behavior. However, it is widely recognized that 
theoretical studies of short-term dynamics are also 
needed [34] in order to understand and interpret 
ecological experiments, most of which occur on time 
scales of less than 1 year [30]. Adaptive management 
and restoration practices require understanding both 
short and long-term effects of field manipulations. 
Transient dynamics, which characterize the behavior 
of a dynamical system before its terminal behavior, 
are garnering more attention in the ecological 
literature [22]. 
Recent investigations of transient dynamics have 
changed researchers’ view of ecological systems. It is 
now understood that traditional analyses of 
ecosystem stability and resilience may give a 
misleading picture of how ecological systems respond 
to environmental perturbation. Resilience, which 
measures how rapidly a stable system returns to its 
original state after a perturbation, is an asymptotic 
property giving the rate of decay of perturbations 
after a very long time. Novel measures of transient 
response, including reactivity [42], have shown that 
perturbations can grow for a time before decaying, 
causing dramatic and long-lasting changes that are 
entirely overlooked by studies of asymptotic 
behavior. Spatially structured models also suggest 
that after a major perturbation, population dynamics 
may become unpredictable for a long time without 
ever attaining simple asymptotic behavior [24]. Such 
complex transient behavior may explain sudden 
outbreaks in populations for which no recent change 
in environmental conditions has been detected. 
Recently, the recognition that transient dynamics can 
be an important aspect of species coexistence has 
received much attention. This transient coexistence 
may elucidate mechanistic explanations for patterns 
in the distribution and abundance of species [22]. 
Ecologists are just beginning to explore the 
importance of transient dynamics. Advances in 
mathematics, statistics, and computing enable more 
sophisticated analyses of complex dynamical systems 
and, hence, provide a deeper understanding of how 
transient dynamics can affect the persistence and 
structure of ecological communities. 
Environmental Variability: Many modelers of 
population, community, and ecosystem dynamics 

seek to incorporate the effects of temporal 
environmental variation. Environmental stochasticity 
is important when attempting to develop predictions 
for the management of endangered species, invasive 
populations, harvested populations, or whole reserve 
areas. Harsh environmental conditions in a single 
year, or repeatedly bad conditions over a series of 
years, may decimate a population. 
Variable environmental conditions are frequently 
simulated using a “white-noise” model. Underlying 
this model is the assumption that environmental 
fluctuations are temporally uncorrelated. However, 
many environmental signals are positively auto 
correlated, or have a “reddened “noise signal, with 

continually increasing variance in time [46]. A run of 
bad conditions is more likely than swiftly alternating 
conditions. There is, however, little work 
demonstrating the impact of positively auto 
correlated environmental signals on commonly used 
management methods, such as population viability 
analysis (PVA). Studies that do incorporate realistic 
reddened noise signals usually rely on simulations to 
achieve generalization [28], [12]. 
Because researchers continue to use white-noise 
models, even in the face of contradictory 
environmental data, research that focuses on 
providing a solid theoretical framework for the 
analysis of reddened environmental variation is sorely 
needed. Marion and colleagues (2000) suggest some 
simple models of colored environmental noise, and 
they have made progress in analyzing the population 
effects of such variation by applying analytical 
approximations such as local linearization of 
stochastic differential formulations and moment 
closure techniques. Further research that focuses on 
the development of analytically tractable methods for 
incorporating environmental stochasticity will be of 
great import, especially where such methods yield 
techniques that can be applied to the protection of 
endangered species,Complex ecological networks. A 
challenge in the study of complex systems is 
integrating recent research on network structures 
with advances in modeling the dynamics of large 
nonlinear systems. Networks of many interacting 
species are widely observed in nature, but few models 
have successfully simulated persistent dynamics of 
complex ecosystems. Since the 1970s, mathematical 
approaches have been used to describe general 
aspects of the network structure, dynamics, and 
stability of food webs, but much of the early work 
inspired by May (1974) was based on simple, 
analytically tractable models. Researchers have used 
biologically realistic, nonlinear mathematical models 
to explore tropic dynamics [40], but they have 
focused on relatively small systems with fewer than 10 
species. A few studies have explored ways to integrate 
complex structure and dynamics in more diverse 
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empirical [50] and model ecosystems [33], but such 
studies often include questionable assumptions about 
structure and dynamics [6]. Research on complex 
ecological networks is computationally intensive and 
was effectively impossible a decade ago. The increase 
in personal computer power, as well as the 
availability of local, low-cost supercomputing power, 
has made such research widely feasible. The study of 
complex eco-logical networks encompasses three 
major challenges that will drive, and take advantage 
of, emerging quantitative and computational 
methods. First, recent insights into the complex 
structure of food web networks need to be integrated 
with modeling the transient, long-term, and 
evolutionary dynamics of diverse non equilibrium, 
nonlinear ecosystems. 
Second, ecological network research needs to more 
effectively encompass other interactions such as 
parasitism, pollination, competition, mutualism, and 
trait-mediated indirect effects [2]. Third, approaches 
for exploring and constraining the large parameter 
spaces generated by high-dimensional models need 
to be developed. In general, the synthetic nature of 
ecological network analysis and model development 
will be facilitated by advances in eco informatics, 
such as the Semantic  
The rates, scales, kinds, and combinations of [global] 
changes occurring now are fundamentally different 
from those at any other time in history; we are 
changing Earth more rapidly than we understand it. 
[49]. Biological diversity is being lost at a record pace 
as a result of habitat loss and fragmentation, climate 
change, pollution, introduction of exotic species, and 
overharvesting [49] . Effective policies for preserving 
global biodiversity depend on accurate predictions of 
species’ temporal and spatial distributions. As 
anthropogenic stresses escalate, the need for reliable 
quantitative approaches in environmental problem 
solving is hard to overstate. 
In the previous section, we discussed the need to 
develop new mathematical and computational 
techniques for understanding complex biological 
systems. We now highlight some of the challenges of 
applying these techniques to specific issues in 
conservation and resource management. 
Conservation biology currently relies on quantitative 
methods, but there are many hurdles to solving 
complex problems, including estimating past and 
predicting future population dynamics, and 
optimizing the spatial design of reserves in a 
changing environment. 
We discuss some of these challenges in the areas of 
extinction risk analysis, landscape connectivity 
analysis, and biodiversity estimation. 
Extinction Risk Analysis:  In the United States and 
other countries, the development of a PVA is a legal 
requirement of any survival plan for threatened and 

endangered species. Typical objectives of PVA 
include assessing the risk of reaching some threshold, 
such as extinction, and projecting population growth, 
either under current conditions or those predicted by 
proposed management plans. There is growing 
concern over the use of PVA models for making 
conservation decisions, in part because census data 
for threatened species are often sparse and error 
prone, causing substantial difficulties in estimating 
population trends [20]. A primary challenge in PVA is 
characterizing and accounting for uncertainties that 
result from process noise and observation. 
Including two types of error in time-series models for 
fluctuating populations is particularly challenging. 
First, there are rarely good estimates for both kinds of 
error, requiring errors to be estimated along with 
parameters. Second, analytical approaches 
incorporating both kinds of error in fits of nonlinear 
time-series models to observed data are scarce [14]. 
Newer methods using maximum-likelihood 
approaches offer a promising avenue for making PVA 
predictions with process and observation 
uncertainties clearly specified and described. This 
approach still needs to be extended to more complex 
models, particularly those that include spatial 
structure [44], individual variation [21], and auto 
correlated environmental variation finally, current 
computational approaches to implement these 
methods can be prohibitively complex. Further work 
is needed to develop algorithms that are as efficient 
as possible [42]. 
Spatiotemporal Landscape Connectivity Analysis: 
Protecting wildlife populations requires quantifying 
how changes in landscape spatial composition, and 
the arrangement of habitats of differing quality, affect 
animal movement in fragmented landscapes [3]. 
Species are affected differently by landscape 
fragmentation because of their specific range size, 
dispersal ability, habitat and food requirements, and 
behavior. Moreover, species’ abilities to move across a 
landscape vary depending on the spatial 
configuration of habitats, the distance separating 
habitats, and the intervening cover types [13]. To 
implement conservation goals and maintain 
populations in fragmented landscapes, structural 
connectivity among habitats needs to be preserved 
through time. Researchers need to develop 
quantitative measures of spatiotemporal landscape 
connectivity that characterize the degree to which 
the landscape impedes or facilitates the movement of 
organisms. There are several statistical and modeling 
challenges to overcome before this can be achieved, 
especially within a spatially explicit modeling 
environment. For instance, connectivity of habitats is 
dynamic, and fluctuates as a result of succession and 
disturbances that modify habitat quality and resource 
availability. Graph theory offers considerable promise 
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in the analysis of landscape connectivity at multiple 
spatial and temporal scales [47].Approaches 
developed in other disciplines, such as circuitry and 
network optimization in computer science, can 
provide a quantitative framework for modeling the 
flux of populations between habitat patches in 
different landscape mosaics. Although existing 
applications of graph theory to landscape ecology 
account for patch size in quantifying landscape 
connectivity, an important avenue for future research 
is to consider the shapes of patches and their 
dynamic properties.  
Biodiversity Extrapolation Techniques: Patterns 
in the spatial distribution of species are a central 
concern in ecology, providing information about the 
forces that regulate biodiversity, the design of nature 
reserves, and the likelihood of species extinction 
following climate change or habitat loss. For most 
habitats and taxonomic groups, detailed species 
distribution maps are unavailable, and researchers 
have invested considerable effort in developing 
methods for estimating the total number of species in 
particular localities, regions, and biomes using sparse 
sample data. Current extrapolation approaches have 
many shortcomings, and new computational and 
statistical techniques for estimating biodiversity are 
critically needed. Parametric methods, species 
accumulation curves, and nonparametric estimators 
are three tools commonly used to estimate species 
richness from samples. Parametric methods estimate 
the number of species in a community by fitting 
sample data to distributional models of relative 
abundance. It is difficult to know a priori which 
distribution is appropriate for the region and 
taxonomic group of interest. Parametric approaches 
implicitly assume that individuals are randomly 
sampled in space or, equivalently, that the spatial 
distribution of individuals across a landscape is 
random. However, most organisms are spatially 
aggregated, and parametric extrapolation methods 
should account for this heterogeneity. The 
performance of species accumulation curves and 
nonparametric methods, on the other hand, is not 
substantially affected by species’ spatial distributions 
[6]. Species accumulation curves use an assumed to 
extrapolate an asymptote of total species richness 
from data on richness and sample size. 
Nonparametric estimators, adapted from mark–
release–recapture statistics for estimating the size of 
animal populations, assume models for how 
singletons and doubletons are distributed in the 
sample community. Both methods significantly 
underestimate biodiversity for low levels of sampling 
intensity [10], [6] and thus provide only a lower 
bound on diversity for highly abundant and diverse 
taxes, such as invertebrates and microorganisms that 
are difficult or impossible to sample extensively. 

Future efforts should account for uncertainties in 
community dominance, in species’ spatial 
distributions, and in sampling intensity. Novel 
techniques for estimating biodiversity, combined 
with emerging cyber science technologies that 
enhance access to species distribution data, will 
facilitate our understanding of local and global 
biodiversity. 
Cyberinfrastructure And Ecoinformatics: Exciting 
things are happening in the life sciences. The big 
challenges such as cancer, AIDS, and drug discovery 
for new viruses require the interplay of vast amounts 
of data from many fields that overlap: genomics, 
proteomics, epidemiology, and so on. Some of this 
data is public, some very proprietary to drug 
companies, and some very private to a patient. The 
Semantic Web challenge of getting interoperability 
across these fields is great but has huge potential 
benefits. [17] Ecological research and its application 
to conservation management require that researchers 
acquire existing data from geographically, 
technologically, and intellectually disparate 
resources; integrate that information; model and 
analyze the information; and recommend policies 
such as establishing ecological reserves, incorporating 
wildfire dynamics into urban planning and managing 
invasive species. For example, understanding the 
potential impacts of an invasive species on an 
ecosystem requires access to diverse information, 
including the basic taxonomy and population 
dynamics of invasive and extant organisms, the 
structure and dynamics of food webs, environmental 
conditions, and the outcomes of experimental and 
observational studies from related systems and 
organisms. Developing eco informatics and 
supporting cyber infrastructure could greatly enhance 
researchers’ ability to intelligently retrieve 
information from diverse sources on the Internet, to 
integrate that information into models that predict 
the spread of the species under various management 
options, to store these results in databases for other 
researchers and managers, and to monitor the impact 
of the decisions made. 
We now present trends in technology that are likely 
to transform the scenarios we have just described 
into reality, and discuss issues that the ecological 
community needs to address to bring this vision to 
fruition. Pieces of these technologies are in place 
already. The emerging tools, technologies, and 
infrastructure can advance current approaches to 
research and management, and can alter how 
ecologists look at our science, opening new windows 
of opportunity for research and application. 
Conclusions: The imaginative approaches at the 
interface of ecology, statistics, mathematics, 
informatics, and computational science can improve 
scientists’ understanding of complex ecological 
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systems and our approach to biological conservation 
and resource management. We have made significant 
progress, but further advances will demand shifting 
the way that we approach research and education. 
Many academic institutions are facilitating 
interdisciplinary research and teaching programs to 
accelerate knowledge in the biosciences. Individuals, 
research institutions, and funding agencies must 
invest more resources in developing and sustaining 
cross disciplinary research collaborations to generate 

more generally applicable research. Educational 
institutions need to invest in programs that provide 
biologists with robust quantitative and informational 
skills, and that provide computer scientists, 
mathematicians, and statisticians with biological 
expertise. The combination of mathematical and 
computational advances, sophisticated informatics 
technologies, and synergistic ties across disciplines 
may well lead to this century’s most fundamental 
advances in ecology and environmental biology. 
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