
 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

International Multidisciplinary Research Foundation 504

LANGUAGE IF IT IS ACCEPTED

BY SOME LATTICE ORDERED FINITE AUTOMATON

P.VIJAYA VANI, POKALA BHASKARUDU

Abstract : In this paper we present some interesting results relating Regular Sets Boolean Algebras and Generalized

Boolean Algebras. It is trivial that power set of any set is a Boolean Algebra under set inclusion. Here we try to

recognize a particular finer class of sets of Σ* and show that it is a Boolean Algebra. We consider the class of Regular

sets Ł over a fixed Σ and define a relation “ ≤ ” on Ł by L1 ≤ L2 if L1 Í L2 . Then (Ł, ≤) is a partially ordered set. With

the same order, the poset (Ł , ≤) is a lattice in which L1 Ú L2 = L1 È L2 and L1 Ù L2 = L1 Ç L2 .

Keywords: Regular Sets, Generalized Boolean Algebras.

Definition: A Non-Deterministic Finite Automaton

(N D F A) is a quintuple

M = (Q, , , q0 , F) where

Q is a non-empty finite set called the set of states of M.

 is a finite set called the input alphabet of M.

 : Q ×  → 2
Q
 is a function called the transition

function of M.

q0 is a fixed element of Q called the initial state of M

F is a subset of Q called the set of final states of M.

Members of F are called accepting states.

Definition: A Deterministic Finite Automaton (D F A)

is a quintuple M = (Q, , , q0 , F) where

Q is a non-empty finite set called the set of states of M.

 is a finite set called the input alphabet of M.

 : Q ×  → Q is a function called the transition

function of M.

q0 is a fixed element of Q called the initial state of M

F is a subset of Q called the set of final states of

M.,members of F are called accepting states.

Note: In a NDFA M = (Q, , , q0 , F) if ׀ (q , a) ׀

= 1 for every (q , a) Є Q ×  , then

M is called a deterministic finite automaton (DFA).

Definition: A Finite Automaton (FA) is either a NDFA or

DFA. Formally a finite automaton (FA) consists of a

finite set of states and a set of transitions from state to

state that occur on input symbols chosen from an alphabet

Σ. One state, usually denoted q0, is the initial state, in

which the automaton starts. Some states are designated as

final or accepting states.

A Finite Automaton (FA) may be interpreted as a finite

control which is in some state of Q, reading a sequence of

symbols from  written on a tape. In one move the Finite

Automaton in state „ q ‟ and scanning symbol „ a ‟ enters

next state  (q , a) and moves its head one symbol to

the right.

 

 Figure – 2.1.12

Definition: A directed graph called a Transition diagram

is associated with an FA as follows. The vertices of the

graph correspond to the states of the FA. If there is a

transition from state q to state p on input a then there is an

arc labeled a from state q to state p in the transition

diagram. The FA accepts a string x if the sequence of

transitions corresponding to the symbols of x leads from

the start state to an accepting state. Accepting states are

double circled.

Example of Automaton transition:

For M = (Q, , , q0 , F) where

Q = { q0 , q1 , q2, q3 , q4 };

Σ = { 0 ,1 } ;

q0 is the start state;

F = { q2, q4 }

 as follows

 0 1

q0 {q0,q3} {q0,q1}

q1 Ø {q2}

q2 {q2 } {q2}

q3 {q4} Ø

q4 {q4} {q4}

The transition diagram is

Figure- 2.1.14

Definition: A Finite Automaton (FA) accepts a string „

s ‟ if the sequence of transitions corresponding to the

symbols of „ s ‟ starting from the initial state and ends at

an accepting state.

Definition: A string „s‟ is said to be accepted by a Finite

Automaton M = (Q, , , q0, F) if  (q , s) contains an

element of F.

1

1

0

0

1

0

1

1

1

1

0

0

1

1

0

0

Finite Control

 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

IMRF Journals 505

Definition: Extend  to 
*

from Q×
*

 → 2
Q
 , defined as

1. 

(q , sa) =  (

*
(q , s) , a) for all strings s and input

symbols a .

2. 

(q , ) = q .

Definition: The language accepted by a Finite Automaton

M = (Q, , , q0 , F) denoted by L(M) is the set

L (M) = { s / * (q0 , s) contains an element of F }

Definition: A language L is said to be a regular set if it is

the set accepted by some Finite Automaton.

Theorem: [Theorem 2.1 of [1]] Let L be a set accepted

by a Non-Deterministic Finite Automaton. Then there

exists a Deterministic Finite Automaton that accepts L

Proof: Let M = (Q, , , q0 , F) be a N D F A

accepting L.

Define a DFA, M
1
 = (Q

1
, , 

1
, q0

1
, F) as follows:

F
1
 = { A  Q / A  F ≠ Ø }

An element of Q
1
 will be denoted by [q1 , q2 , …..., qi],

where q1 , q2 , ……..., qi are in Q.

Let q0
1
 = [q0].

We define


1
([q1 , q2 , ……..., qi], a) = [p1, p2 ,………., pj]

 if and only if

 ({q1 , q2 , ……..., qi }, a) = { p1, p2 ,………., pj }

that is 
1
 is applied to an element

[q1 , q2 , ……..., qi], of Q
1
 is computed by applying  to

each state of Q represented by [q1 , q2 , ……..., qi].

On applying  to each q1 , q2 , ……..., qi and taking the

union , we get some new set of states , p1, p2 ,………., pj .

This new set has a representative [p1, p2 ,………., pj] in

Q
1
 , and that element is the value of 

1
([q1, q2 ,…, qi], a)

It is easy to show by induction on the length of the input

string „s‟ that 
1
 (q0

1
, s) = [q1 , q2 , ., qi] if and only if

 (q0 , s) = { q1 , q2 , ., qi }

Basis: The result is trivial for | s | = 0, since q0
1

= [q0]

and s must be .

Induction : Suppose that the hypothesis is true for inputs

of length m or less.

Let sa be a string of length m+1 with a in  then


1
 (q0

1
, sa) = 

1
 (

1
(q0

1
, s), a)

By the inductive hypothesis


1
 (q0

1
, s) = [p1, p2 ,………., pj]

 if and only if

  (q0 , s) = {p1, p2 ,………., pj }.

But by definition of 
1
,


1

([p1, p2 ,………., pj], a) = [r1, r2 ,……., rk] if and

only if

({p1, p2 ,………., pj }, a) = { r1, r2 ,………., rk}, which

establishes the inductive hypothesis. Now we have only

to add that 
1
 (q0

1
, s) is in F exactly when  (q0, s)

contains a state of Q that is in F.

Thus L (M) = L (M
1
)

Since deterministic and nondeterministic finite automaton

accept the same sets, we shall not distinguish between

them unless it becomes necessary, but shall simply refer

to both as finite automata.

Definition: A N D F A with  - transitions is a

quintuple M = (Q, , , q0 , F) where

Q is a non-empty finite set of states

 is a finite input alphabet

 is a transition function Q ×  {  } to 2
Q
 that is

 : Q ×  {}  2
Q

q0 is an initial state , q0  Q

F is a subset of Q called the set of final states of M.

Members of F are called accepting states.

Definition: Let M = (Q, , , q0 , F) be an N D F A. Let

q Є Q, - Closure(q) is defined as the set of all vertices p

such that there is a path from q to p labeled ε.

Definition: Let M = (Q, , , q0 , F) be an N D F A .

Let P  Q.

-closure(P) is defined as  - Closure(p). Now we

define δ^ as follows.
 p in P

1. ̂ (q , ) = - Closure(q).

2. For w in Σ* and a in Σ, ̂ (q , wa) = - Closure(P),

where P = { p / for some r in ̂ (q, w), p is in δ(r , a)},

It is convenient to extend δ and ̂ two sets of states by

δ (R, a) = q in R δ (q , a) and

̂ (R, w) = q in R ̂ (q , w) for sets of states R

We define L (M) , the language accepted by

M = (Q, , , q0 , F) to Be

{ w / ̂ (q0,w) contains a state in F}.

2.2.5 Theorem: If L is accepted by an N D F A with  -

transitions then L is accepted by an N D F A without  –

transitions.

Proof. Let M = (Q, , , q0 , F) be an NDFA with

 – transitions.

Construct M
1
 = (Q, , 

1
, q0 , F

1
) where

and δ
1

(q, a) is ̂ (q , a) for q in Q and a in Σ. Note that

M
1
 has no – transitions. Thus we may use δ

1
for δ

1
^ .

We show by induction on ׀ x ׀ that δ
1

(q0, x) = ̂ (q0 , x).

However this statement may not be true for x = ,

since δ
1
(q0, ) = {q0}, while ̂ (q0 , x) = - closure(q0).

We therefore begin our induction at 1.

Basis : ׀ x 1 = ׀. Then x is a symbol „a‟ and

δ
1
(q0, a) = ̂ (q0 , a) by definition of δ

1
.

Induction : ׀ x 1 <׀. Let x = wa for symbol a in Σ.

Then δ
1
(q0, wa) = δ

1
(δ

1
(q0, w), a).

By the inductive hypothesis δ
1

(q0, w) = ̂ (q0 , w).

Let ̂ (q0 , x) = P.

We must show that δ
1
(P, a) = ̂ (q0 , wa).

 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

International Multidisciplinary Research Foundation 506

But δ
1
(P, a) = q in P δ

1
(q, a) = q in P ̂ (q , a).

Then as

P = ̂ (q0, w) we have q in P ̂ (q , a) = ̂ (q0, wa) .

Thus δ
1
(q0, wa) = ̂ (q0, wa).

For completeness we show that δ
1

(q0, x) contains a state

of F
1
 if and only if ̂ (q0 , x) contains a state in F.

If x = , this statement is immediate from the definition of

F
1
. That is δ

1
(q0, ) = {q0}, and q0 is placed in F

1

whenever ̂ (q0, ) which is - Closure(q0), contains a

state possibly q0 in F. If x ≠  then x = wa for some

symbol a . If ̂ (q0, x) contains a state in F, then surely δ
1

(q0, x) contains a state in F
1
 . Conversely if δ

1
(q0, x)

contains a state in F
1
 other than q0, then ̂ (q0, x)

contains a state in F. If δ
1

(q0, x) contains q0 and q0 is not

in F, then as ̂ (q0 , x) = - Closure(δ(̂ (q0, w), a)), the

state in - Closure(q0) and in F must be in ̂ (q0 , x).

Thus L accepted by an N D F A with  - transitions is

accepted by an N D F A without  – transitions.

Definition: Let  be a finite set of symbols and let

languages L, L1, L2 be sets of strings from 


 The concatenation of L1 and L2 , denoted by L1L2 is

the set {

s1s2 / s1 is in L1 and s2 is in L2 }.

 The Kleene Closure of L, denoted by L

 , is the set

L

 = i


= 0 L

i

 The Positive Closure of L, denoted by L
+
 , is the set

L
+
 = i


= 0 L

i

 L

 = L L

i-1
 and L

0
 = {  }.

Definition : If r is a regular expression of the language L

then we write L = L(r). The regular expressions are said

to be equal i.e., r = s if L(r) = L (s).

Definition: Let  be an alphabet, the regular expressions

over  are defined recursively as follows.

 ⌀ is a regular expression and denotes the empty set.

  is a regular expression and denotes the set {  }.

 For each „ a ‟ in  , „ a ‟ is a regular expression and

denotes the set {a}.

 If l1 and l2 are regular expressions corresponding to the

languages L1 and L2 respectively. Then (l1 + l2) , (l1l2

) , l1

and l2


 are regular expressions that corresponding

to the sets L1  L2, L1L2 , L1

 and L2


 respectively.

Definition : If r is a regular expression denoting the

language L then we write L = L(r). We say that regular

expression r and s are equal, and write r =s if L(r) = L (s).

Result: For regular expressions r , s , t corresponding to

the languages L (r), L (s), L (t) respectively. It is easy

to verify the following.

 r + s = s + r

 (r + s) + t = r +(s + t)

 (rs) t = r (st)

 r (s + t) = rs + rt

 (r + s) t = rt + st

 

 = 

 (r

)


 = r



 ( + r)

 = r



 (r

 s

)

 = (r + s)



Theorem: Let r be a regular expression of a language L.

Then there exists an N D F A with  - transitions that

accepts L (r).

Proof: We shall prove this theorem by induction on the

number of operators in the regular expression „ r ‟of L,

that there is an N D F A with  - transitions, having one

final state and no transitions out of this final state, such

that L(M) = L(r).

Suppose the expression r has zero operators.

Since r has zero operators, the expression r must be , ,

or a for „ a ‟ in . The N D F A „s in the following figures

clearly satisfy the conditions.

1. r = 

2. r = 

3. r = a

Assume that the theorem is true for regular expressions r

with fewer than n operators, n > 1. Let r have n operators.

There are three cases depending on the form of r.

Case 1 : Let r = r1 + r2, where r1 and r2 are regular

expressions less than n operators. Thus there are N D F A

„s M1 = (Q1, 1, , q1 , {f1}) and

M2 = (Q2, 2, , q2 , {f2}) with

L (M 1) = L (r 1) and L (M 2) = L (r 2).

Since we may rename states of a N D F A at will we may

assume Q1 and Q2 are disjoint. Let q 0 be a new initial

state and f 0 a new final state.

We construct

M = (Q1  Q2 {q 0 , f 0 }, 1 2 , , q0 , {f0}),

Where  is defined by

1.  (q 0 , ) = { q 1 , q 2 }.

2.  (q , a) =  1 (q , a) for q in Q 1 – { f 1 }

 and a in  1  {}

3.  (q , a) =  2 (q , a) for q in Q 2 – { f 2 }

 and a in  2  {}

4.  (f1 , ) =  1 (f2 , ) = { f0 }

 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

IMRF Journals 507

We recall by the inductive hypothesis that there are no

transitions out of f1 or f2 in M1 or M2 .Thus all the moves

of M1 and M2 are present in M.

The construction of M is depicted in the following figure.

 Figure 2.3.6

Thus any path in the transition diagram of M from q0 to f0

must begin by going to either q1 or q2 or . If the path

goes to q1, it may follow any path in M1 to f1 and then go

to f0 on . Similarly paths that begin by going to q2 may

follow any path in M2 to f2 and then go to f0 on . These

are the only paths from q 0 to f0 . It follows immediately

that there is a path labeled „ s ‟ in M 1 from q 1 to f 1 or a

path in M 2 from q 2 to f 2 .

Hence L (M) = L (M 1)  L (M 2) as desired.

Case 2 : r = r1r2

Let M 1 and M 2 be as in case 1 and construct

M = (Q1 Q2 , 1 2 , , q1 , {f2}), where

1.  (q , a) =  1 (q , a) for q in Q 1 – { f 1 } and a in  1

{}

2.  (f1 , ) = { q2}

3.  (q , a) =  2 (q , a) for q in Q 2 and a in  2 {}

The construction of M is given in the following figure.

Figure 2.3.6

Every path in M from q1 to f2 is a path labeled by some

string „ s ‟ from q1 to f1, followed by the edge from f1 to

q2 labeled ,followed by a path labeled by some string

from q2 to f2 Thus L (M) = { xy / x is in L (M1) and y is

in L (M2) } and L(M) = L (M1) L (M2) as desired.

Case 3 : r = r1


Let M1 = (Q1  {q 0 , f 0 }, 1 , , q0 , {f0}),Where  is

given by

1.  (q0 , ) =  (f1 , ) = {q1 ,f0 }

2.  (q, a) = 1(q , a) for q in Q1 – { f } and a in 1  {

 }.

The construction of M is depicted in the following figure.

 Figure 2.3.6

So any path from q0 to f0 consists either of a path from q0

to f0 on  or a path from q0 to q1 on , followed by some

number (possibly zero) of paths from q1 to f1 , then back

to q1 on , each labeled by a string in L (M1) , followed

by a path from q1 to f1 on a string in L (M1), then to f0 on

 . Thus there is a path in M from q0 to f0 labeled x if and

only if we can write s = s1s2……..sj for

some j > 0 (the case j = 0 means s = ) such that each si

is in L (M1)

Hence L (M) = L (M1)

 as desired.

Theorem: If L is accepted by a DFA then L is denoted by

a regular expression.

Proof: Let L be the language accepted by the DFA M =

(Q, , , q0 , F) where Q = {q1 , q2,q3

,… qn }. Let R
k
ij denote the set of all strings x such that

(qi , x) = qj and if  (qi , y) = ql , for any y that

is a prefix of x other than x or , then l ≤ k . That is R
k
ij is

the set of all strings that take the finite automaton from

state qi to state qj with out going through any state

numbered higher than k . Since there is no state numbered

greater than n ,R
k
ij denotes all strings that take qi to qj .

We can define R
k
ij recursively,

R
k
ij = R

k-1
ik (R

k-1
kk)*R

k-1
kj R

k-1
ij

R
0
ij = {a / ((qi , a) = qj} if i ≠ j

 = {a / ((qi , a) = qj}  {  } if i = j

We show that for each i , j , k there exists a regular

expression r
k
ij denoting the language R

k
ij. We proceed by

induction on k.

Basis: k = 0. R
0
ij is a finite set of strings each of which

either  or a single symbol. Thus r
0
ij can be written

as a1 + a2 + a3 +… +ap or (a1 + a2 + a3 +… +ap + ) if i =

j , where { a1 , a2 , a3 ,… ap} is the

set of all symbols a such that  (qi , a) = qj .

If there are no such a‟s then Ø ( or in the case i = j)

serves as r
0
ij.

Induction: The recursive formula for R
k
ij given clearly

involves only the regular expression operators: union,

concatenation and closure. By the induction hypothesis

for each l and m there exists a regular expression r
k-1

lm

such that L(r
k-1

lm) = R
k-1

lm. Thus for r
k
ij we may select the

regular expression

r
k
ij = (r

k-1
ik)(r

k-1
kk)*(r

k-1
kj)+ (r

k-1
ij), which completes the

induction.

Now we observe that L (M) = q in F R
n

1j since R
n
1j

denotes the labels of all paths from q1 to qj. Thus L (M) is

denoted by the regular expression.

r
n
1j1 + r

n
1j2 + r

n
1j3 +……. + r

n
1jp. where F = { qj1 + qj2 + qj3

+……. + q1jp }.

Thus L accepted by a DFA is denoted by a regular

expression.

 Figure 2.3.7

Thus the languages accepted by finite automata are

precisely the languages denoted by regular expressions

are precisely the languages denoted by regular

expressions. This equivalence was the motivation for

calling finite automaton languages regular languages.

 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

International Multidisciplinary Research Foundation 508

Pumping Lemma is a powerful tool for proving that

certain languages are non regular.

Lemma:[Lemma 3.1 of [1]] Let L be a regular language.

Then there is a constant n such that if z is any word in L

and׀ z ׀ ≥ n , we write z = uvw in such a way that ׀uv׀ ≤ n

and for all i ≥ 0, uv ,1 ≤ ׀ v ׀ ,
i
w is in L. Furthermore, n is

no greater than the number of states of the smallest FA

accepting L.

Example: The language L = { a
j2

 / j is an integer, j ≥ 1},

which consists of all strings of a ‟s whose length is a

perfect square, is not regular.

Solution: Assume L is a regular language and let m be the

integer in the pumping lemma,

let z = a
m
 . By the pumping lemma , a

 m
 may be written

as uvw, where 1 ≤ ׀ v ׀ ≤ m

and uv
j
w is in L for all j. In particular, let j = 2.

However, m
2
uv ׀ >

2
w ׀ ≤ m

2
 + m < (m+1)

2
.

That is, the length of uv
2
w lies properly between m

2
 and

(m+1)
2
 and is thus not a perfect square.

Thus uv
2
w is not in L , a contradiction .

We conclude that L is not regular.

Theorem: The regular languages are closed under union,

concatenation and kleene closure.

Proof: Claim 1 : Union of Regular languages is regular.

Let L1 be L (M 1) for DFA M1 = (Q1, 1, , q1 , {f1})

and

Let L2 be L (M 2) for DFA M2 = (Q2, 2, , q2 , {f2}).

If r1 and r2 are regular expressions denoting regular

languages L1 and L2 then r1 + r2 denotes L1 L2 = L (M)

for DFA

M = (Q1 Q2 {q 0 , f 0 }, 1 2 , , q0 , {f0}), where 

is

1.  (q 0 , ) = { q 1 , q 2 }.

2.  (q , a) =  1 (q , a) for q in Q 1 – { f 1 } and a in 

1 {}

3.  (q , a) =  2 (q , a) for q in Q 2 – { f 2 } and a in 

2 {}

4.  (f1 , ) =  1 (f2 , ) = { f0 }

So L1 L2 is also regular. Thus Union of Regular

languages is regular.

Hence regular languages are closed under union.

Claim 2 : Concatenation of Regular languages is regular.

Let L1 be L (M 1) for DFA M1 = (Q1, 1, , q1 , {f1})

and

Let L2 be L (M 2) for DFA M2 = (Q2, 2, , q2 , {f2}).

If r1 and r2 are regular expressions denoting regular

languages L1 and L2 then r1r2 denotes L1L2 = L (M) for

DFA

M = (Q1 Q2 , 1 2 , , q1 , {f2}), where  is

1.  (q , a) =  1 (q , a) for q in Q 1 – { f 1 }

 and a in  1 {}

2.  (f1 , ) = { q2}

3.  (q , a) =  2 (q , a) for q in Q 2 and a in  2 {}

So L1L2 is also regular. Thus Concatenation of Regular

languages is regular.

Hence regular languages are closed under Concatenation.

Claim 3 : Kleene Closure of Regular languages is regular.

Let L1 be L (M 1) for DFA M1 = (Q1, 1, , q1 , {f1})

If r1 is a regular expression denoting regular language L1

then r1

denotes L1

*
 = L = L (M) for DFA

M = (Q1  {q 0 , f 0 }, 1 , , q0 , {f0})

Where  is given by

1.  (q0 , ) =  (f1 , ) = {q1 ,f0 }

2.  (q, a) = 1(q , a) for q in Q1 – { f }

 and a in 1  {  }.

So L = L1
*
 is also regular. Thus Kleene Closure of

Regular languages is regular.

Hence regular languages are closed under Kleene Closure.

Theorem: The class of regular languages is closed under

complementation that is if L is a regular language and L

 

 then 


 − L is a regular language.

Proof : Let L be L (M) for DFA M =(Q, 1, , q0 , F)

and let L  

 To prove the class of regular languages is

closed under complementation, we construct a DFA

M
1
 = (Q, , , q0 , Q − F).

First we may assume 1 =  , for if there are symbols in

1 not in , we may delete all transitions of M on

symbols not in . The fact that L  

 assures us that we

shall not there by change the language of M.

If there are symbols in  not in 1, then none of these

symbols appear in words of L. We may therefore

introduce a “ dead state ” „ d ‟ into M with  (d , a) = d

for all a in  and  (q , a) = d for all q in Q and a in

 - 1. Now to accept 

 − L, we complement the final

state of M that is M
1
 = (Q, , , q0 , Q - F) then M

1

accepts a word w if and only if  (q0 , w) is in Q – F

that is w is in 

 - L. Thus if L is a regular language and

L  

 then 


 − L is a regular language that is the class

of regular languages is closed under complementation.

Theorem: The class of regular languages are closed

under intersection.

Proof: Let L1 be L (M 1) for DFA M1 = (Q1, , , q1 ,F1)

and

Let L2 be L (M 2) for DFA M2 = (Q2, , , q2 , F2).

Consider L1  L2

__ __

L1  L2 = L1L2 ,

where the over bar denotes the complementation with

respect to an alphabet including the alphabets L1 and L2 .

Thus Closure under intersection follows from closure

under union and complementation.

Definition Let Ł be the class of regular languages. Define

a relation “ ≤ ” on Ł by L1 ≤ L2 if L1  L2 .

Proposition: If Ł be the class of regular languages then

(Ł, ≤) is a partially ordered language.

Proof: For any L1 Є Ł , we have by the definition of “ is

contained in ”

L1  L2  L1 ≤ L2

 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

IMRF Journals 509

Thus „ ≤ ‟ is reflexive.

Suppose L1 ≤ L2 and L2 ≤ L1

 L1  L2 and L2  L1

Now by the definition of equality in languages

Since L1  L2 and L2  L1 imply L1 = L2

Thus „ ≤ ‟ is antisymmetric.

Suppose L1 ≤ L2 and L2 ≤ L3  L1  L2 and L2  L3

Now L1  L2  L3  L1  L3

 L1 ≤ L3

Thus „ ≤ ‟ is transitive.

Therefore (Ł, ≤) is a partially ordered language.

Theorem: Let Ł be the class of regular languages. Then

the poset Ł is a lattice in which L1 L2 = L1 L2 and L1

L2 = L1L2 .

Proof: Now we show that Ł is a lattice .

Claim 1: l. u. b. { L1 , L2 } = L1 L2 = L1 L2

Let L = L1 L2

By definition of union on languages

L1  L and L2  L

 L1 ≤ L and L2 ≤ L

Suppose there exists L* such that L1 ≤ L* and L2 ≤ L*

 L1  L* and L2  L*

 L1  L* = L* and L2  L* = L*

Consider L* = L1 L*

= L1  (L2  L*)

= (L1  L2)  L*

L1  L2  L*

L  L*

L ≤ L*

Thus l. u. b. { L1 , L2 } = L1 L2 = L1 L2 = L

Claim 2: g. l. b. { L1 , L2 } = L1 L2 = L1  L2

Let L = L1 L2

By definition of intersection on languages

L  L1 and L  L2

 L ≤ L1 and L ≤ L2

Suppose there exists L* such that L* ≤ L1 and L* ≤ L2

 L*  L1 and L*  L2

 L* = L*  L1 and L* = L*  L 2

Consider L* = L*  L2

= (L*  L1)  L2

= L*  (L1  L2)

 L*  L1  L2

 L*  L  L* ≤ L

Thus g. l. b. { L1 , L2 } = L1 L2 = L1 L2 = L

Hence Ł is a lattice in which L1 L2 = L1 L2 and L1  L2

= L1 L2 .

Note: For Ł, the class of regular languages over a fixed

Σ , Ø Є Ł is the minimal element of Ł as Ø ≤ Ł i.e. Ø  Ł

for all L Є Ł and 

 Є Ł is the maximal element of Ł as

L ≤ * for all L Є Ł.

Definition: The lattice Ł of regular languages is said to

be a lattice monoid if it satisfies the following conditions.

(i) L   =   L =  L  Ł.

(ii) L1 (L2  L3) = (L1  L2)  (L1  L3) and

(iii).(L2  L3)  L1 = (L2  L1)  (L3  L1)

  L1 ,L2 ,L3 Є Ł

and  is a binary operation

 (in particular on Ł , is concatenation).

Note : * is a free monoid generated by  with the

concatenation operation.

Definition: A Lattice Ordered Finite Automaton (LA) is

a quintuple M = (Q, , , I , F) where

Q is a non-empty finite set called the set of states of M.

 is a finite set called the input alphabet of M.

 : Q × × Q → [, *] is a function called the fuzzy

transition function of M.

I: Q → [, *] is a fuzzy subset of Q called the fuzzy

initial state set of M.

F: Q → [, *] is a fuzzy subset of Q called the fuzzy

final state set of M.

Definition : Extend  to 
*
from Q ×  × Q → [, *],

defined as

1 .

(q ,, p) = * if q = p

 =  otherwise

2 .

(q, sa, p) =  [*(q, s , r) *(r, a, p)], s *, a ,

p, q, r  Q.

Note: For any two strings s, w * and for all p, q  Q,

*(q, sw, p) = [*(q, s , r) *(r, a, p)], r  Q.

Definition: The language accepted by a lattice ordered

finite automaton (LA) M = (Q, , , I , F)

denoted by L(M) is the set L(M) = {s/I(q)*(q, s ,

p)F(p)} and is called ℓ-language.

Definition: A ℓ-language L is said to be ℓ- regular

language if it is accepted by some lattice ordered finite

automaton (LA) i.e. L = L(M).

Note: Two lattice ordered finite automaton LA‟s M1 and

M2 are said to be equivalent if they accept same ℓ-

language i.e. L(M1) = L(M2).

REFERENCES

1. Adaricheva, K.V., and J.B.Nation. “Reflections on

lower bounded lattices”, AlgebraUniversalis

53(2005).307-330.

2. Beauquier.D. and Pin. J.E . “Factors of

words”.Volume 372 of Lecture notes in computer

Science, pages 63-79, Berlin,1989. SpringVerlag.

 Mathematical Sciences International Research Journal : Volume 3 Issue 2 (2014) ISSN 2278-8697

International Multidisciplinary Research Foundation 510

3. Bernstein E,Vazrani, “Quantum complexitytheory”.

SIAMJ comp,1997.

4. Campeanu.C. and Ho. Nu.W.H.,Culik.K.

“Statecomplexity of basic operations on

finitelanguages”. In O. Boldt and

H.Jurgensen,Proceedings of the 4th

Internationalworkshop on implementing.

Automata,number 2214 in LNCS,

5. Campeanu.C. and Ho. W.H. “The maximumstate

complexity for finite language” .Journalof

Automata, Languages andCombinatorics,9(2-3) 189-

202,september2004.

6. Castro JL, Delgado M, Mantas C T. “A

newapproach for the execution and adjustmentof a

fuzzy algorithm” Fuzzy set system 2001.

7. Champarnadh.J.M. and Pin. J.E .”A

maximumproblem on finite automata”.

Discreteapplied mathematics.

8. Crespi areghizzi.S., Pradella. M.,Pietro. P .“

Associative definitions of programming languages”.

Computer languages, 26:105-123, 2000.

9. Eilenberg.S. “Automata, Languages, and machines”,

Vol. A. Acd Press,1974.

10. Feiner.l. “Hierarchies of Boolean algebras”.11.

Freese,R.,Jezek.J. amd Nation.J.B.“Free Lattices”,

Mathematical Surveys and Monographs, vol. 42,

Amer.Math.soc.,Providence, RI, 1995.

12. Gile C,Omlin C,Thornber K K. “Equivalence in

knowledge representation: Automata, Recurrent

neural network and dynamical fuzzy systems.”

13. Gratzer,G.,“General Lattice Theory”,

SecEdn,Birkhauser Verlag, Basel, 1998

14. Gunter Pilz.”Near-rings”

15. Hanf.W. “Model-theoretic methods in the study of

elementary logic”, Theory of models (Proc.1963

internet. Sympos., Berkeley), North-

Holland,Amsteerdam,1965,pp.132 145.MR

35#1457.

16. Holcombe.”Near-rings associated withautomata”,

San B163-166.

17. Holzer.M. and M.Kutrib. “State complexity of basic

operations on nondeterministic finite automata”

18. Hopcroft J.E,Ullman “Introduction to Automata

theory. Language and Computation.”

19. Hopcroft.J.E. and Ullman.J.D. “Introduction to

automata theory, Languages, and

computation”,addision-Weslwy,1979.

20. Joshi.A.K., Levy.L.S., and Yueh.K. “Local

constraints in the syntax and semantics of

programming languages”.

21. Lee E T,Zadeh L.A “A note on fuzzy languages” inf

Sci, 1969.

22. Li.Y M,Pedrycz W.F. “Fuzzy finite automata and

fuzzy regular expressions with membership values

in lattice -ordered monoids.”

23. Li.Y.M., Z.K.Shi, “Finite Automata with values in

lattice-monoid and their languages.”

P.Vijaya Vani

Faculty, Dept of IBS

Acharya Nagarajuna University , Guntur,

Andhra Pradesh, India.

Pokala Bhaskarudu

Lecturer in Mathematics

S V Arts College (T T D),Tirupati

