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LANGUAGE IF IT IS ACCEPTED  

BY SOME LATTICE ORDERED FINITE AUTOMATON 
 

 

P.VIJAYA VANI,  POKALA BHASKARUDU
 

Abstract : In this paper we present some interesting results relating Regular Sets Boolean Algebras and Generalized 

Boolean Algebras. It is trivial that power set of any set is a Boolean Algebra under set inclusion. Here we try to 

recognize a particular finer class of sets of Σ* and show that it is a Boolean Algebra. We consider the class of Regular 

sets Ł over a fixed Σ and define a relation “ ≤ ” on Ł by L1 ≤ L2 if L1 Í L2 . Then ( Ł, ≤ ) is a partially ordered set. With 

the same order, the poset ( Ł , ≤ ) is a lattice in which L1 Ú L2 = L1 È L2 and L1 Ù L2 = L1 Ç L2 .  

 

Keywords: Regular Sets, Generalized Boolean Algebras. 

Definition:  A Non-Deterministic Finite Automaton           

( N D F A ) is  a  quintuple 

M = ( Q, , , q0 , F )    where 

Q  is a non-empty finite set called the set of states of M. 

 is a finite set called the input alphabet of M. 

  : Q  ×   → 2
Q
   is a function called the transition 

function of M. 

q0  is a fixed element of Q called the initial state of  M 

F is a subset of Q called the set of final states of M. 

Members of F are called accepting states. 

 

Definition: A Deterministic Finite Automaton ( D F A ) 

is  a  quintuple  M = ( Q, , , q0 , F )    where 

Q  is a non-empty finite set called the set of states of M. 

  is a finite set called the input alphabet of M. 

  : Q  ×    → Q   is a function called the transition 

function of M. 

q0  is a fixed element of Q called the initial state of  M 

F is a subset of Q called the set of final states of 

M.,members of F are called accepting states. 

 

Note: In a NDFA  M = ( Q, , , q0 , F ) if    ׀ ( q , a )   ׀

=  1 for every                               ( q , a ) Є Q  ×  , then 

M is called a deterministic finite automaton ( DFA). 

 

Definition: A Finite Automaton (FA) is either a NDFA or 

DFA. Formally a finite automaton (FA) consists of a 

finite set of states and a set of transitions from state to 

state that occur on input symbols chosen from an alphabet 

Σ. One state, usually denoted q0, is the initial state, in 

which the automaton starts. Some states are designated as 

final or accepting states. 

A Finite Automaton  ( FA ) may be interpreted as a finite 

control which is in some state of Q, reading a sequence of 

symbols from   written on a tape. In one move the Finite 

Automaton in state „ q ‟ and scanning symbol „ a ‟ enters 

next state      ( q , a ) and moves its head one symbol to 

the right. 

                                                                  

 

                                         

    Figure – 2.1.12 

Definition: A directed graph called a Transition diagram 

is associated with an FA as follows. The vertices of the 

graph correspond to the states of the FA. If there is a 

transition from state q to state p on input a then there is an 

arc labeled a from state q to state p in the transition 

diagram. The FA accepts a string x if the sequence of 

transitions corresponding to the symbols of x leads from 

the start state to an accepting state. Accepting states are 

double circled. 

 

Example of Automaton transition:  

For M = ( Q, , , q0 , F ) where 

Q = { q0 , q1 , q2, q3 , q4 };  

Σ = { 0 ,1 } ;   

q0  is the start state;  

F = { q2, q4 } 

 

 as follows 

      0       1 

q0 {q0,q3}                {q0,q1} 

q1    Ø  {q2} 

q2 {q2 }  {q2} 

q3 {q4}  Ø 

q4 {q4}  {q4} 

 

The transition diagram is  

 

Figure- 2.1.14 

Definition: A Finite Automaton  ( FA ) accepts a string „ 

s ‟ if the sequence of transitions corresponding to the 

symbols of  „ s ‟ starting from the initial state and ends at 

an accepting state. 

 

Definition: A string „s‟ is said to be accepted by a Finite 

Automaton  M = ( Q, , , q0, F ) if   ( q , s ) contains an 

element of F. 
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Definition: Extend  to 
* 

from Q×
* 

 →  2
Q
 , defined as 

1. 

( q , sa ) =  ( 

*
( q , s ) , a )  for all strings s and input 

symbols a . 

2. 

( q ,  ) = q . 

 

Definition: The language accepted by a Finite Automaton  

M = (Q, , , q0 , F) denoted by L( M ) is the set  

L (M ) = { s / * (q0 , s ) contains an element of F } 

 

Definition: A language L is said to be a  regular set if it is 

the set accepted by some Finite Automaton. 

 

Theorem: [Theorem 2.1 of [1]] Let L be a set accepted 

by a Non-Deterministic Finite Automaton. Then there 

exists a Deterministic Finite Automaton that accepts L                      

Proof:  Let M = ( Q, , , q0 , F ) be a N D F A 

accepting L. 

Define a DFA,  M
1
 = ( Q

1
,  ,  

1
,  q0

1
,  F  ) as  follows: 

F
1
 = { A  Q / A  F ≠ Ø }  

An element of Q
1
 will be denoted by [ q1 , q2 , …..., qi ], 

where q1 , q2 , ……..., qi  are in Q.  

Let q0
1
 = [ q0]. 

We define  


1 
( [q1 , q2 , ……..., qi ], a ) = [ p1, p2 ,………., pj ]  

 if and only if                               

  ( {q1 , q2 , ……..., qi }, a ) = { p1, p2 ,………., pj }   

that is  
1
  is applied to an element 

[q1 , q2 , ……..., qi], of  Q
1
  is computed by applying  to 

each state of Q represented by            [q1 , q2 , ……..., qi ]. 

On applying  to each  q1 , q2 , ……..., qi  and taking the 

union , we get some new set of states , p1, p2 ,………., pj . 

This new set has a representative  [p1, p2 ,………., pj ] in 

Q
1
 , and that element is the value of 

1 
( [q1, q2 ,…, qi ], a ) 

It is easy to show by induction on the length of the input 

string „s‟ that   
1
 (q0

1
, s ) = [q1 , q2 , ., qi] if and only if  

 (q0 , s ) = { q1 , q2 , ., qi } 

Basis: The result  is trivial for  | s | = 0, since q0
1 

= [ q0 ] 

and s must be . 

Induction : Suppose that the hypothesis is true for inputs 

of length m or less. 

Let  sa   be a string of length  m+1 with a   in   then 


1
 (q0

1
, sa )  = 

1
 (

1
(q0

1
, s ), a ) 

By the inductive hypothesis 


1
 (q0

1
, s ) = [p1, p2 ,………., pj ] 

 if and only if                                    

     (q0 , s ) = {p1, p2 ,………., pj }. 

But by definition of 
1
,  


1 

( [p1, p2 ,………., pj ], a ) = [ r1, r2 ,……., rk ]  if  and  

only  if 

( {p1, p2 ,………., pj }, a ) = { r1, r2 ,………., rk}, which 

establishes the inductive  hypothesis. Now we have only 

to add that  
1
 (q0

1
, s ) is in F exactly when  (q0, s) 

contains a state of Q that is in F. 

Thus  L ( M ) = L ( M 
1
) 

Since deterministic and nondeterministic finite automaton 

accept the same sets, we shall not distinguish between 

them unless it becomes necessary, but shall simply refer 

to both as finite automata. 

Definition: A   N D F A  with   - transitions is  a  

quintuple  M = ( Q, , , q0 , F )    where 

Q  is a non-empty finite set of states 

 is a finite input alphabet 

 is a transition function Q  ×   {  } to 2
Q
 that is  

 : Q  ×   {}   2
Q
 

q0 is an initial state , q0  Q 

F is a subset of Q called the set of final states of M. 

Members of F are called accepting states. 

 

Definition: Let M = (Q, , , q0 , F ) be an N D F A. Let 

q Є Q, - Closure(q) is defined as the set of all vertices p 

such that there is a path from q to p labeled ε. 

 

Definition: Let M = ( Q, , , q0 , F ) be an N D F A .  

Let P  Q. 

-closure(P) is defined as   - Closure(p). Now we 

define δ^ as follows.
               p in P 

1. ̂  (q , ) = - Closure(q).     

2. For w in Σ* and a in Σ, ̂  (q , wa) = - Closure(P), 

where    P = { p / for some r in ̂ (q, w), p is in δ(r , a)}, 

It is convenient to extend δ and ̂  two sets of states by 

δ ( R, a ) = q in R δ (q , a) and 

̂  (R, w ) = q in R ̂  (q , w) for sets of states R 

We define L (M) , the language accepted by  

M = ( Q, , , q0 , F)  to Be 

{ w / ̂  ( q0,w) contains a state in F}. 

 

2.2.5 Theorem: If L is accepted by an N D F A  with  - 

transitions then L is accepted by an N D F A  without  – 

transitions. 

Proof. Let M = ( Q, , , q0 , F ) be an NDFA with  

 – transitions.  

Construct  M
1
 = ( Q, , 

1
, q0 , F

1
 )   where 

 

 

and δ
1 

(q, a ) is ̂  (q , a) for q in Q and a in Σ. Note that 

M
1
 has no  – transitions. Thus we may use δ

1 
for δ

1
^ .  

We show by induction on ׀ x ׀ that δ
1 

(q0, x ) = ̂ (q0 , x). 

However this statement may not be true for x = ,  

since δ
1 
(q0,  ) = {q0}, while ̂  (q0 , x) =  - closure(q0). 

We therefore begin our induction at 1. 

Basis : ׀ x 1 = ׀. Then x is a symbol „a‟ and  

δ
1 
(q0, a ) = ̂  (q0 , a) by definition of δ

1 
. 

Induction : ׀ x 1 <׀. Let x = wa for symbol a in Σ. 

Then δ
1 
(q0, wa ) = δ

1 
( δ

1 
(q0, w ), a). 

By the inductive hypothesis δ
1 

(q0, w ) = ̂  (q0 , w).  

Let ̂ (q0 , x) = P.  

We must show that δ
1 
(P, a ) = ̂ (q0 , wa). 
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But δ
1 
(P, a ) = q in P δ

1 
(q, a ) = q in P ̂ (q , a). 

Then as  

P = ̂ (q0, w) we have q in P ̂ (q , a) = ̂ (q0, wa ) . 

Thus δ
1 
(q0, wa ) = ̂ (q0, wa ). 

For completeness we show that δ
1 

(q0, x ) contains a state 

of F
1
 if and only if ̂ (q0 , x) contains a state in F.  

If x = , this statement is immediate from the definition of 

F
1
. That is  δ

1 
(q0,  ) = {q0}, and q0 is placed in F

1
 

whenever ̂ (q0,  ) which is - Closure(q0), contains a 

state possibly q0 in F. If x ≠   then x = wa for some 

symbol a . If ̂ (q0, x ) contains a state in F, then surely δ
1 

(q0, x ) contains a state in F
1
 . Conversely if δ

1 
(q0, x )  

contains a state in F
1
 other than q0, then  ̂ (q0, x ) 

contains a state in F. If δ
1 

(q0, x )  contains q0 and q0 is not 

in F, then as  ̂ (q0 , x) = - Closure(δ( ̂ (q0, w ), a)),  the 

state in - Closure(q0) and in F must be in   ̂ (q0 , x ). 

Thus L accepted by an N D F A  with  - transitions is 

accepted by an  N D F A    without  – transitions. 

 

Definition: Let  be a finite set of symbols and let 

languages L, L1, L2 be sets of strings from 

 

 The concatenation of L1 and L2 , denoted by  L1L2 is  

the set                                                                      { 

s1s2 / s1 is in L1 and s2 is in L2 }. 

 The Kleene Closure of L, denoted by L

 , is  the set  

L

 =  i


= 0 L

i
 

 The Positive Closure of L, denoted by L
+
 , is  the set  

L
+
 =  i


= 0 L

i
 

 L

 = L L

i-1
     and     L

0
   = {  }. 

 

Definition : If r is a regular expression of the language L 

then we write L = L(r).  The regular expressions are said 

to be  equal i.e.,  r = s if L(r) = L (s). 

 

Definition: Let  be an alphabet, the regular expressions 

over  are defined recursively as follows. 

 ⌀ is a regular expression and denotes the empty set. 

   is a regular expression and denotes the set {  }. 

  For each „ a ‟ in  , „ a ‟ is a regular expression and 

denotes the set {a}. 

 If l1 and l2 are regular expressions corresponding to the 

languages L1 and  L2 respectively. Then (l1 + l2) , ( l1l2 

) , l1

and l2


 are regular expressions that corresponding 

to the sets L1  L2, L1L2 , L1

 and  L2


 respectively. 

 

Definition : If r is a regular expression denoting the 

language L then we write  L = L(r). We say that regular 

expression r and s are equal, and write r =s if L(r) = L (s). 

 

Result: For regular expressions r , s , t corresponding to  

the languages  L ( r ), L ( s ), L ( t ) respectively. It is easy 

to verify the following. 

 r + s  =  s + r 

 ( r + s ) + t = r +( s + t ) 

 ( rs ) t = r ( st ) 

 r ( s + t ) = rs + rt 

 ( r + s ) t = rt + st 

 

 =  

 ( r

 ) 


 =  r 


 

 (  + r ) 

 = r 


 

 ( r

 s

 )

 = ( r + s )


 

 

Theorem: Let r be a regular expression of a language L. 

Then there exists an   N D F A with  - transitions that 

accepts L ( r ). 

Proof: We shall prove this theorem  by induction on the 

number of operators in the regular expression „ r ‟of L, 

that there is an N D F A with  - transitions, having one 

final state and no transitions out of this final state, such 

that L(M) = L(r). 

Suppose the expression r has zero operators. 

Since r has zero operators, the expression r must be , , 

or a for „ a ‟ in . The N D F A „s in the following figures 

clearly satisfy the conditions. 

 

1.  r =  

 
2. r =  

 
3.  r =  a 

 
Assume that the theorem is true for regular expressions r 

with fewer than n operators, n > 1. Let r have  n operators. 

There are three cases depending on the form of r. 

Case 1 : Let r = r1 + r2, where r1 and r2 are regular 

expressions less than n operators. Thus there are N D F A 

„s M1 = ( Q1, 1, , q1 , {f1} ) and  

M2 = ( Q2, 2, , q2 , {f2} ) with 

L ( M 1 ) = L ( r 1 ) and L ( M 2 ) = L ( r 2 ). 

Since we may rename states of a N D F A at will we may 

assume Q1 and Q2 are disjoint. Let q 0 be a new initial 

state and f 0 a new final state. 

We construct   

M = ( Q1  Q2 {q 0 , f 0 }, 1 2 , , q0 , {f0} ), 

Where  is defined by 

1.  ( q 0 ,  ) = { q 1 , q 2 }. 

2.  ( q , a ) =  1 ( q , a ) for q in Q 1 – { f 1 }  

    and a in  1  {} 

3.  ( q , a ) =  2 ( q , a ) for q in Q 2 – { f 2 }  

    and a in  2  {} 

4.  ( f1 ,  ) =  1 ( f2 ,  ) = { f0 } 
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We recall by the inductive hypothesis that there are no 

transitions out of f1 or f2 in M1 or M2 .Thus all the moves 

of M1 and M2 are present in M. 

The construction of M is depicted in the following figure. 

 
             Figure 2.3.6 

Thus any path in the transition diagram of M from q0 to f0 

must begin by going to either   q1 or q2 or . If the path 

goes to q1, it may follow any path in M1 to f1 and then go 

to f0  on . Similarly paths that begin by going to q2 may 

follow any path in M2 to f2 and then go to    f0  on . These 

are the only paths from q 0 to f0 . It follows immediately 

that there is a path labeled  „ s ‟ in M 1 from q 1 to f 1 or a 

path in M 2 from q 2 to f 2 . 

Hence  L ( M ) = L ( M 1 )  L ( M 2 ) as desired. 

Case 2 : r = r1r2 

Let M 1 and M 2 be as in case 1 and construct 

M = ( Q1 Q2 , 1 2 , , q1 , {f2} ), where 

1.  ( q , a ) =  1 ( q , a ) for q in Q 1 – { f 1 } and a in  1 

{} 

2.  ( f1 ,  ) = { q2} 

3.  ( q , a ) =  2 ( q , a ) for q in Q 2 and a in  2 {} 

The construction of M is given in the following figure. 

 
Figure 2.3.6 

Every path in M from q1 to f2 is a path labeled by some 

string „ s ‟ from q1 to f1, followed by the edge from f1 to 

q2 labeled ,followed by a path labeled by some string 

from q2 to f2 Thus L ( M ) = { xy / x is in L ( M1 ) and y is 

in L ( M2 ) } and L( M ) = L ( M1 ) L ( M2 ) as desired. 

Case 3 : r = r1

 

Let M1 = ( Q1  {q 0 , f 0 }, 1 , , q0 , {f0} ),Where  is 

given by 

1.  ( q0 ,  ) =  ( f1 ,  ) = {q1 ,f0 } 

2.  ( q, a ) = 1( q , a ) for q in Q1 – { f } and a in 1  { 

 }. 

The construction of M is depicted in the following figure. 

 
                                 Figure 2.3.6 

So any path from q0 to f0 consists either of a path from q0 

to f0 on  or a path from q0 to q1 on , followed by some 

number (possibly zero) of paths from q1 to f1 , then back 

to q1 on , each labeled by a string in L ( M1 ) , followed 

by a path from q1 to f1 on a string in L ( M1 ), then to f0 on 

 . Thus there is a path in M from q0 to f0 labeled x if and 

only if we can write                            s = s1s2……..sj for 

some j > 0 ( the case j = 0 means s =  ) such that each si 

is in L ( M1 ) 

Hence L ( M ) = L ( M1 )

  as desired. 

 

Theorem: If L is accepted by a DFA then L is denoted by 

a regular expression. 

Proof: Let L be the language accepted by the DFA M = 

(Q, , , q0 , F)  where                                 Q = {q1 , q2,q3 

,… qn }. Let R
k
ij denote the set of all strings x such that   

( qi , x ) = qj  and if              ( qi , y ) = ql , for any y that 

is a prefix of x other than x or , then l ≤ k . That is R
k
ij is 

the set of all strings that take the finite automaton from 

state qi to state qj with out going through any state 

numbered higher than k . Since there is no state numbered 

greater than n ,R
k
ij denotes all strings that take qi to qj . 

We can define R
k
ij recursively, 

R
k
ij = R

k-1
ik (R

k-1
kk )*R

k-1
kj R

k-1
ij 

R
0
ij = {a / (( qi , a ) = qj}     if i ≠ j 

        = {a / (( qi , a ) = qj}  {  } if i = j 

We show that for each i , j , k there exists a regular 

expression r
k
ij denoting the language R

k
ij. We proceed by 

induction on k. 

Basis: k = 0. R
0
ij is a finite set of strings each of which 

either  or a single symbol. Thus             r
0
ij can be written 

as a1 + a2 + a3 +… +ap or ( a1 + a2 + a3 +… +ap +   )  if i = 

j , where                                   { a1 , a2 , a3 ,… ap}  is the 

set of all symbols a such that    ( qi , a ) = qj  . 

If there are no such a‟s then Ø ( or in the case i = j )   

serves as r
0
ij. 

Induction: The recursive formula for R
k
ij given clearly 

involves only the regular expression operators: union, 

concatenation and closure. By the induction hypothesis 

for each l and m there exists a regular expression r
k-1

lm 

such that L(r
k-1

lm) = R
k-1

lm. Thus for r
k
ij we may select the 

regular expression 

r
k
ij = (r

k-1
ik )(r

k-1
kk )*(r

k-1
kj )+ (r

k-1
ij), which completes the 

induction. 

Now we observe that L (M) = q in F R
n

1j since R
n
1j 

denotes the labels of all paths from q1 to qj. Thus L (M) is 

denoted by the regular expression. 

r
n
1j1 + r

n
1j2 + r

n
1j3 +……. + r

n
1jp. where F = { qj1 + qj2 + qj3 

+……. + q1jp }. 

Thus L accepted by a DFA  is denoted by a regular 

expression. 

 
            Figure 2.3.7 

Thus the languages accepted by finite automata are 

precisely the languages denoted by regular expressions 

are precisely the languages denoted by regular 

expressions. This equivalence was the motivation for 

calling finite automaton languages regular languages. 
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Pumping Lemma is a powerful tool for proving that 

certain languages are non regular. 

 

Lemma:[Lemma 3.1 of [1]] Let L be a regular language. 

Then there is a constant n such that if z is any word in L  

and׀ z ׀ ≥ n , we write z = uvw in such a way that  ׀uv׀ ≤ n 

and for all i ≥ 0, uv ,1 ≤ ׀ v ׀ ,
i
w is in L. Furthermore, n is 

no greater than the number of states of the smallest FA 

accepting L.       

                                                                                                   

Example: The language L = { a
j2

  /  j  is an integer, j ≥ 1}, 

which consists of all strings of   a ‟s whose length is a 

perfect square, is not regular. 

Solution: Assume L is a regular language and let m be the 

integer in the pumping lemma,  

let z = a
m
  . By the pumping lemma , a

 m
  may be written 

as  uvw, where 1  ≤ ׀ v ׀ ≤ m  

and uv
j
w is in L for all j. In particular, let j = 2.  

However, m
2 
uv ׀ >

2
w ׀ ≤ m

2
 + m < (m+1)

2
.  

That is, the length of uv
2
w lies properly between m

2
 and 

(m+1)
2
 and is thus not a perfect square.  

Thus uv
2
w is not in L , a contradiction .  

We conclude that L is not regular. 

 

Theorem: The regular languages are closed under union, 

concatenation                                    and  kleene closure. 

Proof: Claim 1 : Union of Regular languages is regular. 

Let L1 be L ( M 1 ) for DFA M1 = ( Q1, 1, , q1 , {f1} ) 

and 

Let L2 be L ( M 2 ) for DFA M2 = ( Q2, 2, , q2 , {f2} ). 

If r1 and r2 are regular expressions denoting regular 

languages L1 and L2 then r1 + r2 denotes L1 L2 = L ( M ) 

for  DFA 

M = ( Q1 Q2 {q 0 , f 0 }, 1 2 , , q0 , {f0} ), where   

is 

1.  ( q 0 ,  ) = { q 1 , q 2 }. 

2.  ( q , a ) =  1 ( q , a ) for q in Q 1 – { f 1 } and a in  

1 {} 

3.  ( q , a ) =  2 ( q , a ) for q in Q 2 – { f 2 } and a in  

2 {} 

4.  ( f1 ,  ) =  1 ( f2 ,  ) = { f0 } 

So L1 L2 is also regular. Thus Union of Regular 

languages is regular. 

Hence regular languages are closed under union. 

Claim 2 : Concatenation of Regular languages is regular. 

Let L1 be L ( M 1 ) for DFA M1 = ( Q1, 1, , q1 , {f1} ) 

and 

Let L2 be L ( M 2 ) for DFA M2 = ( Q2, 2, , q2 , {f2} ). 

If r1 and r2 are regular expressions denoting regular 

languages L1 and L2 then r1r2 denotes    L1L2 = L ( M ) for  

DFA 

M = ( Q1 Q2 , 1 2 , , q1 , {f2} ), where  is 

1.  ( q , a ) =  1 ( q , a ) for q in Q 1 – { f 1 }  

     and a in  1 {} 

2.  ( f1 ,  ) = { q2} 

3.  ( q , a ) =  2 ( q , a ) for q in Q 2 and a in  2 {} 

So L1L2 is also regular. Thus Concatenation of Regular 

languages is regular. 

Hence regular languages are closed under Concatenation. 

Claim 3 : Kleene Closure of Regular languages is regular. 

Let L1 be L ( M 1 ) for DFA M1 = ( Q1, 1, , q1 , {f1} ) 

If r1 is a  regular expression denoting regular language L1 

then r1

denotes   L1

*
 = L = L (M) for DFA   

M = (Q1  {q 0 , f 0 }, 1 , , q0 , {f0} ) 

Where  is given by 

1.  ( q0 ,  ) =  ( f1 ,  ) = {q1 ,f0 } 

2.  ( q, a ) = 1( q , a ) for q in Q1 – { f }  

      and a in 1  {  }. 

So L = L1
*
 is also regular. Thus Kleene Closure of 

Regular languages is regular. 

Hence regular languages are closed under Kleene Closure. 

 

Theorem: The class of regular languages is closed under 

complementation that is if  L is a regular language and L 

 

 then 


 − L is a   regular language. 

Proof : Let L be L ( M ) for  DFA   M =( Q, 1, , q0 , F ) 

and let L  

  To prove the class of regular languages is 

closed under complementation, we construct a DFA                                            

M
1
 = ( Q, , , q0 , Q − F ). 

First we may assume 1 =  , for if there are symbols in 

1 not in , we may delete all transitions of M on 

symbols not in . The fact that L  

 assures us that we 

shall not there by change the language of M. 

If there are symbols in  not in 1, then none of these 

symbols appear in words of L. We may therefore 

introduce a “ dead state ” „ d ‟ into M with    ( d , a ) = d 

for all a in  and  ( q , a ) = d for all q in Q and a in             

 - 1. Now to accept 

 − L, we complement the final 

state of M that is   M
1
 = ( Q, , , q0 , Q - F ) then M

1
 

accepts a word w if and only if   ( q0 , w )  is in Q – F 

that is w is in 

 - L. Thus if L is a regular language and  

L  

 then 


 − L is a regular language that is the class 

of regular languages is closed under complementation. 

 

Theorem: The class of regular languages are closed  

under intersection. 

Proof:  Let L1 be L (M 1) for DFA M1 = (Q1, , , q1 ,F1) 

and 

Let L2 be L (M 2) for DFA M2 = (Q2, , , q2 , F2). 

Consider  L1  L2 

_______ 

__      __ 

L1     L2  =  L1L2   , 

 

where the    over   bar   denotes the complementation with 

respect to an alphabet including the alphabets L1 and L2 . 

Thus Closure under intersection follows from closure 

under union and complementation. 

 

Definition Let Ł be the class of regular languages. Define 

a relation “ ≤ ” on Ł by    L1 ≤ L2 if  L1  L2 . 

 

Proposition: If Ł be the class of regular languages then           

( Ł, ≤ ) is a partially ordered language. 

Proof:  For any L1 Є Ł , we have by the definition of  “ is 

contained in ” 

L1  L2  L1  ≤  L2 
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Thus „ ≤  ‟ is reflexive.
 

Suppose L1 ≤ L2 and L2 ≤ L1 

 L1  L2 and L2  L1 

Now  by the definition of equality in languages 

Since L1  L2 and L2   L1  imply L1  = L2 

Thus „ ≤  ‟ is antisymmetric. 

Suppose L1 ≤ L2 and L2 ≤ L3  L1  L2 and L2  L3 

Now   L1  L2  L3  L1  L3 

 L1 ≤ L3 

Thus „ ≤  ‟  is transitive. 

Therefore ( Ł, ≤ ) is a partially ordered language. 

 

Theorem: Let Ł be the class of regular languages. Then 

the poset Ł is a lattice in which L1 L2 = L1 L2 and L1 

L2 = L1L2 . 

Proof:  Now we show that  Ł is a lattice  . 

Claim 1: l. u. b. { L1 , L2 } = L1 L2 = L1 L2 

Let L = L1 L2 

By definition of union on languages 

L1  L and L2  L 

  L1 ≤ L and L2 ≤ L 

Suppose there exists L* such that L1 ≤ L* and L2 ≤ L* 

  L1  L* and L2  L* 

  L1  L* = L* and L2  L* = L* 

Consider L* = L1 L* 

= L1  ( L2  L* ) 

= (L1  L2 )  L* 

L1  L2  L* 

L  L* 

L ≤ L* 

Thus l. u. b. { L1 , L2 } = L1 L2 = L1 L2 = L 

Claim 2: g. l. b. { L1 , L2 } = L1 L2 = L1  L2 

Let L = L1 L2 

By definition of intersection on languages 

L  L1 and L  L2 

  L ≤ L1 and L ≤ L2 

Suppose there exists L* such that L* ≤ L1 and L* ≤ L2 

  L*  L1 and L*  L2 

  L* = L*  L1 and L* = L*  L 2 

Consider L* = L*  L2 

= (L*  L1 )  L2 

= L*  ( L1  L2 ) 

 L*  L1  L2 

 L*  L  L* ≤ L 

Thus g. l. b. { L1 , L2 } = L1 L2 = L1 L2 = L 

Hence Ł is a lattice in which L1 L2 = L1 L2 and L1  L2 

= L1 L2 . 

 

Note: For Ł, the class of regular languages over a fixed          

Σ , Ø Є Ł is the minimal element of Ł as Ø ≤ Ł i.e. Ø  Ł 

for all L Є Ł and  

 Є Ł is the maximal element of Ł as                

L ≤ * for all L Є Ł. 

 

Definition: The lattice Ł of regular languages is said to 

be a lattice monoid if it satisfies the following conditions. 

(i)  L   =   L =  L  Ł. 

(ii) L1 (L2  L3)  =  (L1  L2 )  (L1  L3 ) and 

(iii).(L2  L3)  L1  =  (L2  L1 )  (L3  L1 )  

   L1 ,L2 ,L3 Є Ł 

and  is a binary operation  

                            (in particular on Ł , is concatenation). 

 

Note : * is a free monoid generated by  with the 

concatenation operation. 

 

Definition: A Lattice Ordered Finite Automaton (LA) is  

a  quintuple   M = ( Q, , , I , F )    where  

Q  is a non-empty finite set called the set of states of M. 

  is a finite set called the input alphabet of M. 

  : Q  × ×  Q → [, *]   is a function called the fuzzy 

transition function of M. 

I: Q → [, *] is a fuzzy subset of Q called the fuzzy 

initial state set  of  M. 

F: Q → [, *] is a fuzzy subset of Q called the fuzzy 

final state  set  of  M. 

 

 

Definition : Extend  to 
*
from Q  ×   ×  Q → [, *], 

defined as 

1 .

(q ,, p)  = * if q = p 

     =  otherwise 

2 .

(q, sa, p ) =  [*(q, s , r) *(r, a, p)], s *, a , 

p, q, r  Q. 

 

Note: For any two strings s, w * and for all p, q  Q,                                                         

*(q, sw, p) = [ *(q, s , r) *(r, a, p)], r  Q. 

 

Definition: The language accepted by a lattice ordered 

finite automaton (LA)                      M = ( Q, , , I , F) 

denoted by L(M) is the set L(M) = {s/I(q)*(q, s , 

p)F(p)} and is called    ℓ-language. 

 

Definition: A ℓ-language L is said to be ℓ- regular 

language if it is accepted by some lattice ordered finite 

automaton (LA) i.e. L = L(M). 

 

Note: Two lattice ordered finite automaton LA‟s M1 and 

M2 are said to be equivalent if they accept same ℓ-

language i.e. L(M1) = L(M2). 
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